

LA-UR-19-30856

Approved for public release; distribution is unlimited.

Convincing Search for Sterile Neutrinos at LANL Coherent Captain-Mills (CCM) Experiment Title:

Author(s): Van De Water, Richard G.

Intended for: APS Meeting, 2019-04-13 (Denver, Colorado, United States)

Issued: 2019-10-24

Convincing Search for Sterile Neutrinos at LANL Coherent Captain-Mills (CCM) Experiment

CAPTAIN = "Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos" LANL Team

P-25, P-23, P-27, AOT

R.G. Van de Water (PI, Spokesperson), Elena Guardincerri (co-PI), Walter Sondheim, Tyler Thornton, En-Chuan Huang, T.J. Schaub, Mitzi Boswell, Bill Louis, Steve Elliot, Charles Kelsey, Charles Taylor, Dan Poulson, Bob Macek

T-2: Daniele S. M. Alves (co-PI), Joe Carlson, Rajan Gupta

External Team

Mike Shaevitz (Columbia), H. Ray (U. Florida)Janet Conrad (MIT), **Robert Cooper, (LANL-NMSU, Co-Spokes),** Josh Spitz (U. Mich), R. Van Berg (U. Penn), M. Toups (FNAL), R.Tayloe (IU), and many students + PD's

WHY NOW?

New MiniBooNE + LSND

Short baseline anomalies did not go away, instead, 2018 MiniBooNE + LSND are consistent and combined $\sim 6\sigma$

An unambiguous experimental test is needed demonstrating:

$$\left\{egin{array}{cccc}
u_{\mu} &
ightarrow &
u_{s} &
ightarrow &
u_{e} \
u_{e} &
ightarrow &
u_{s} \
u_{\mu} &
ightarrow &
u_{s} \end{array}
ight.$$

WHY LANL?

Coherent CAPTAIN-Mills is the only experiment being proposed that can test ν_{μ} disappearance with sufficient sensitivity at the LSND mass scale

CCM will be complementary to other neutrino programs around the world

CCM is unique, well-motivated, timely, and fully funded by LANL LDRD funding!

Testing the sterile neutrino hypothesis

Past, current, and future experiments:

Oscillation Mode	Experiment Type	Past/Current Experiments	Signal Significance at LSND Mass Scale	Future Experiments (next 5 years)
$ u_{\mu} ightarrow u_{e}$	Short baseline accelerator	LSND, MiniBooNE, MicroBooNE	6.1 σ	SBN@FNAL program, JSNS ²
$\nu_e \rightarrow \nu_s$	Reactor/source	Daya Bay, RENO, Double Chooz	~2-3 σ	PROSPECT, DANNS, SOLID, BEST, NEOS
$\nu_{\mu} ightarrow \nu_{s}$	Short/Long baseline accelerator	SciBooNE+Mini- BooNE, MINOS+, IceCube	none	CCM

New experiment proposes 100 kg CsI detector at SNS arXiv:1901.08094

Severe Tension Between Appearance & v_{μ} Disappearance Experiments in a 3+1 Model

3+1 Models With v_e Appearance Require Large v_e & v_μ Disappearance!

In general, P(
$$\nu_{\mu}$$
 -> ν_{e}) ~ ¼ P(ν_{μ} -> ν_{x}) P(ν_{e} -> ν_{x})

Assuming that the 3 light neutrinos are mostly active and the N heavy neutrinos are mostly sterile.

More Exotic SBL Possibilities Than 3+N Models

(Sterile neutrinos may have other interactions!)

- Sterile Neutrino Decay
- Sterile Neutrinos NSI & New Gauge Bosons
- Altered Dispersion Relations (Resonant Oscillations)
- Pseudo-Dirac Neutrinos
- Light WIMP Production (Light WIMPs can behave like neutrinos)
- Lorentz Violation & CPT Violation
- Mass-Varying Neutrinos
- Neutrino De-Coherence
- etc.

Require

 $u_{\mu} \rightarrow \nu_{s}$ measurements at LSND energy to resolve different models

Coherent CAPTAIN-Mills experiment

Production mechanism:

charged pions decaying at rest \Rightarrow monoenergetic neutrinos

$$\begin{array}{ccc}
 & \mu^+ & \\
 & \pi^+ & \xrightarrow{\mu} \\
 & E_{\nu_{\mu}} = 30 \text{ MeV}
\end{array}$$

Detection mechanism:

Coherent Elastic Neutrino-Nucleus Scattering "CEvNS"

present for all active neutrinos

absent for sterile neutrinos

LANSCE-Lujan Facility a unique place to perform significant and timely test of Sterile Neutrinos

Lujan is a Competitive Neutrino Source Low duty factor critical for background rejection

- Neutrino experiments require high instantaneous power (signal/background)
 SNS = 0.029 kJ/nsec; Lujan= 0.028 kJ/nsec
- Plan to run Lujan at ~100 nsec beam width with minimal intensity reduction⁸

Detecting Coherent Neutrinos: Maximizing Scintillation Light Detection!

• 120 R5912 PMT's, wavelength shifting TPB foils

RAT/GEANT Detector Simulation

Simulations predict ~0.5 PE/keVnr

- Liquid Argon scintillates at 128 nm with 40,000 photon/MeV, or 40 photons/keV.
 - fast 6 nsec and slower ~1.6 usec time constants.
 - TPB wavelength shifting coating on PMT's and foils to convert to visible light.
- Detailed RAT/GEANT4 simulation predicts 10-20 keV detection threshold.

Expected CAPTAIN-Mills LAr Event Rates (80 kW @ 8 months, 7 tons LAr)

Large LAr coherent eleastic neutrino-nucleus scattering (CEvNS) cross sections -> 1000's events!

Reaction	L = 20 m	L = 40 m
	(events/yr)	(events/yr)
Coherent v_{μ} (E = 30 MeV)	2709	677
Coherent $v_e + \bar{v}_{\mu}$	9482	2370
Charged Current v_e	257	64
Neutral Current $ u_{\mu}$	36	18
Neutral Current $ar{ u}_{\mu}$	79	20

- Two oscillation analysis samples with different strategy/backgrounds:
 - **PROMPT** with beam (mono-energetic ν_{μ}) scattering end point energy 50 keV
 - **DELAYED** 4 usec after the beam $(\nu_e + \overline{\nu}_{\mu})$ scattering end point energy 148 keV

Signal/Background Strategy

- ~1,000 CEvNS events 3 years.
- Near/far cancellation to reduce systematic errors.
- Can move detector to multiple positions (sample L/E).

0.94

Background mitigation crucial, attack with flexible strategy

- Fast (~nsec) detector and beam 2.9x10⁻⁶ duty factor (250 nsec)
- Variable beam width reduced to 30 to 100 nsec for systematic checks.
- Instrumented and integrated veto.
- Beam off subtraction (precise, but affect statistics on signal)
- Particle ID separate electron and nucleon events > 10²
- Shielding can adapt as neutron background measured.

Beam Neutron Backgrounds

- Neutrons from the target, and interactions in the surrounding material.
- No beam off subtraction and veto provides minimal rejection.
- Prompt Signal: EJ-301 detectors measured bulk neutrons < 70 MeV. Expect ~100 nsec (200 nsec) neutron free window near (far) position.
- Delayed Signal: Low (slow) energy neutrons efficiently rejected with concrete/water shielding.

Neutrino window free of Neutrons: More upstream steel shielding increases window

Building CCM in ~4 months was a Herculean Team Effort!

Students

Alex Diaz (MIT)
Jose Palata (UNAM)
Nick Kamp (UMich)

Complete PDS System Test at LANL with Coherent Captain-Mills (CCM) Detector

- LAr cold test entire SBND PDS system: 96 TPB coated + 24 uncoated PMT's, mounts, cables, feedthrus, HV, electronics, trigger, DAQ, calibration, simulations and data analysis.
- Built detector August-Dec 2018 at LANSCE/Lujan center (100 kW neutron/ stopped pion neutrino source)

TPB coated PMTs

Uncoated PMTs

TPB coated reflector foils.

Maximize light output to detect coherent neutrino-nucleus scatting

First Results from System Testing: Scope Traces

- Single PhotoElectron ~5 mV
- RMS noise < 0.1 mV

Cosmic Ray

Singlet light ~6nsec

Triplet light ~1.6 usec

- Electrons have low singlet/triplet ratio
- Nucleons have high singlet/triplet ratio

Pulse shape discrimination

Particle ID

CCM Lujan Run: Dec 12 to 20th

- Beam stable with high uptime and ~82 uA current, total 1.5E20 POT
 - 3871036 beam triggers with no steel shielding
 - 2482616 beam triggers with steel shielding
- Detector ran stable,
- LAr loss rate of ~1.5" day, require 3 top offs during run.
- DAQ performed well, 20 Tbytes of data taken.

Searching for Single PEs in Pre-Beam Data (T. J. Schaub)

- One dead PMT's. Two with bad SPE gains.
- Can see clear single PE peak and noise wall

Beam Event Definition, Global Event View

- DAQ readout window 16 usec: 10 usec pre-beam, 4 usec post beam.
- Find all PMTs for a given time sample that pass a threshold (~0.3 PEs)
- An event is consecutive samples with 5 or more PMTs above threshold
- Amplitude and Integral are calculated as the sum amplitudes and integrals of the individual PMTs for the event range

TOF_c neutrino window ~100 nsec Neutrinos, DM, magnetic moment

Sanity check: cosmic-ray muons (Dan Paulson)

- Cosmic ray muons reach the Earth surface at a rate ~ 1/cm²/minute
- Their flux is proportional to $cos2(\theta)$, θ being the zenith angle

- Most of them are Minimum Ionizing Particles and deposit ~ 2.1 MeV/cm in LAr
- Muons going through the top and bottom of the tank deposit > 300 MeV
 - They produce more than 12E6 photons in the tank, HUGE signal!
- Based on the shape and size of the inner tank their expected rate is 331 muon/s
- Muons just crossing the top of the tank are expected with a rate of 555 muons/s

With Simple Cuts

- 334 events compatible with muons found in 1.0 s, equivalent to muons/s
- Since we are not requiring PMTs from the top region to fire we expect a rate between 331 and 555 muons/s
- The measured rate is consistent with the expected rate and possibly some shielding resulting from the east side of the building being below grade.

Ar39 Rates and Energy Calibration

- Beta decay endpoint 565 keV, mid energy 219 keV.
- Scan for events in pre-beam region

• Measured rate ~1.4x10⁻⁴ per 150 nsec window, consistent with expectation.

Beam Events with and without Shielding

- Observe beam neutron turn on relative to speed of light particle (~100 nsec)
- More shielding decreases neutron rate and increases timing shift
- Gives confidence more steel shielding will increase neutron free region

CCM Measuring Muon-Neutrino Disappearance with Neutral Current Coherent Neutrino Scattering

• CEvNS muon disappearance signal would provide smoking gun proof of sterile neutrinos at the LSND+MiniBooNE mass scale.

CCM Sensitivity to "3+1" sterile neutrino hypothesis (3-year run)

- Can prove/disprove at $\sim 3\sigma$ LSND 3+1 sterile neutrino hypothesis.
- Five year run would approach $5\sigma!$
- If no signal, can rule out world best fit at better than 90%

Summary

- Build CCM detector in 4 months and ran for a week at the end of 2018.
- Demonstrated stabile operations, 0.5 PE/keV response with a PMT based LAr detector.
- Will use TOF to isolate mono-energetic neutrinos from neutron backgrounds.
- Calibration and beam running from May-Dec 2019 will establish CEvNS signal.
- Will add more shielding and push for shorter beam width of 100 nsec to improve signal separation.
- Building upgraded detector CCM200 with twice the photocathode coverage and begin muon neutrino disappearance run in 2020.
- Seeking funding for a second CCM detector to improve sterile neutrino and DM search (NSF, DOE Dark Matter FOA, etc)

Backups: The Neutrino Scatters Here!

Coherent elastic neutrino-nucleus scattering (CEvNS)

$v + A \rightarrow v + A$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to E_v~ 50 MeV

- Low energy nucleus recoil E ~ 10's keV
- Well-calculable cross-section in SM:
 SM test, probe of neutrino NSI
- Dark matter direct detection background
- Possible applications (reactor monitoring)

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

Coherent Neutrinos have been Recently Observed at SNS

First light at the SNS with 14.6-kg Csl[Na] detector

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov^{1,2}, J. B. Albert³, P. An⁴, C. Awe^{4,5}, P. S. Barbeau^{4,5}, B. Becker⁶, V. Belov^{1,2}, A. Brown^{4,7}, A. Bolozdy...

+ See all authors and affiliations

Science 03 Aug 2017: eaao0990

MiniBooNE New Oscillation Results

MiniBooNE is consistent with LSND excess, and combined is 6 σ

Integrated and Active Veto Regions for Background Rejections

- 7 tons LAr Fiducial volume, 3 tons LAr Veto (2-3 radiation lengths).
- Active Veto region crucial to rejecting cosmic rays and other external backgrounds.
 - 1 MeV gamma: 2 rad lengths: 100 keV x-ray: 10 rad lengths: 1 MeV neutron: 1 scatter length

Coherent Neutrino-Nucleus Scattering Energy Spectrum Delayed Neutrinos

Prompt Neutrinos E_{muon}= 30 MeV

Random Backgrounds for CEvNS

- Cosmogenic: about ~200 Hz. Beam duty factor + overburden + veto, will reduce to 10 (130) events/year.
- **U/Th**: Dust and PMT glass contains U/Th ~MeV beta/ gamma. Expect ~10 Hz per PMT. Analysis tricks such as fiducial cuts, or large charge in a single PMT cuts will reduce significantly. Will need to pay attention to cleanliness during detector construction. Expected background small.
- Beam off subtraction will measure these backgrounds extremely well.
- 295 nsec beam good, but some running with shorter beam time of 30 or 100 nsec would provide systematic check on background estimates.

Random Backgrounds for CEvNS

- 39 Ar: 565 keV endpoint β emitter: In CCM detector, estimate 7.5 kHz rate.
 - Beam rejection factor ~10⁵
 - energy cut (~10¹), pulse height discrimination (10¹ to 10⁵)
 - Measured precisely by beam off running.
 - Subtraction increases signal statistical error from 2.7% to 3.5% (prompt), minimal effect on delayed signal.

Detailed Target MCNP Simulations (Charles Kelsey P-27)

Nuclear Instruments and Methods in Physics Research A 594 (2008) 373–381 Nuclear Instruments and Methods in Physics Research A 632 (2011) 101–108

Fig. 1. Elevation view of the Lujan Center's TMRS geometry used in our calculations. The main components are labeled: split tungsten target (W), beryllium reflector (Be), lead reflector–shield (Pb), and the steel reflector–shield (Fe).

- Simulations has confirmed hand calculated flux of ~4.74x10⁵ nu/cm²/s at 20 m
- Horizontal extend of neutrino production at the source of 8 cm (1 sigma position error)
- Simulated neutron backgrounds

Initial Neutron Rates and Spectrum (TOF) Measurements with EJ-301 Neutron Detectors

Neutron Reduction with 26" Steel

Leading edge of neutrons ~76 MeV which is 168 nsec delay over 20m

Timing Delays Measured (Scope): Working out a few missing pieces – dealing with legacy knowledge/equipment

